
Plugins
In this chapter, we will enhance the CMS engine so it can use plugins or external
code modules, which can be "plugged" into the engine to add new abilities to it.

This chapter will include the following topics:

•	 What are plugins and triggers and why must a CMS handle them

•	 The creation of the plugin architecture

•	 Enabling plugins

•	 Handling of plugin database tables and upgrades

•	 Creating an example plugin, Page Comments

After completing this chapter, the CMS could be considered "complete", in that
almost every other requested feature can be supplied by writing a plugin for it.

However, it should be noted that a CMS never is actually complete, because each
new website may bring a new request that is not yet catered for.

Having said that, using plugins lets you at least complete a "core" engine and
concentrate on providing hooks that allow further development to be done, outside
that core.

What are plugins?
A plugin is a module of code that can be dropped into a directory and enabled, to
give a CMS extra capabilities.

Plugins need to be able to change the output and do other tasks, so it is necessary to
add various "hooks" throughout the code where the plugins can apply their code.

www.eBookTM.Com

Plugins

[154]

A very important reason for adding a plugin architecture to a CMS is that it lets you
stabilize the core code. The core is basically the code that will be available in every
instance of the CMS, as opposed to plugin code, which may or may not be present in
any particular instance of the CMS.

With a core piece of code that is deemed "complete", it becomes easier to manage
bugs. Because you are not always adding to the core code, you are not actively
adding to the potential number of bugs.

In a CMS which does not have a stable core, any change to the central code can affect
just about anything else.

You really need to get your CMS to a stage where you are no longer developing
the central engine. Instead, you are working mostly on external plugins and maybe
occasional bug ixes to the core, as they are found.

In my case, for example, I worked for years on building up a CMS before getting
around to building in plugins. Every change that was requested was built into the
core code. Usually, only the fully-tested code at that time would be the new code,
so very often we would miss a problem that the new code would have caused
somewhere else in the CMS. Often, this problem would not show up for weeks, so it
would not be obvious what the problem was related to!

When all the development of a CMS is shifted to plugins, it becomes less likely that
the core is at fault when a problem occurs. Because plugins, by their nature, tend to
be isolated pieces of code, if a bug does appear, it is very likely the bug is within the
plugin's code and not anywhere else.

Also, because plugins allow a person to develop without touching the core engine, it is
possible for the external teams or individuals to create their own plugins that they can
use with the engine, without needing to understand all the parts of the core engine.

One more advantage is that if the plugin architecture is solid, it is possible for
development to continue on the core completely separately from the plugins,
knowing that plugins from one version of the CMS will most likely work with a core
from another version.

Events in the CMS
One example of a hook is event triggers.

In JavaScript (and therefore jQuery), there is the concept of events, where you can set
a block of code to run when a certain trigger happens.

www.eBookTM.Com

Chapter 7

[155]

For example, when you move your mouse over an element, there are a number of
potential trigger points—onmouseover, onmouseenter, onmousemove (and possibly
others, depending on the context).

Obviously, PHP does not have those events, as it's a server-side language. But it is
possible to conceive of triggers for your CMS that you could potentially hook onto.

For example, let's say you've just inished iguring out the page content. At this
point, you may want to trigger a page-content-created event. This could (and
will, in this chapter) be used by a Page Comments plugin to tack on the comments
thread, and any required forms, to the end of that page content.

Another example: Let's say you want to create a custom log for your own purposes.
You would then be interested in a start trigger that can be used to initialize certain
values, such as a timer. After the output has been sent, a inish trigger that can be
used to tally up a number of igures (compilation time, memory used, size of rendered
output, and so on) and record them in a ile or database before the script inishes.

Page types
In some cases, you will want the page content to be totally converted. Instead of
showing a page body as normal, you may want to show an image gallery or a store
checkout.

In this case, you would need to create a "page type" block of code, which the front-
end will use instead of the usual page data render() call.

In the admin area, this might also require using a customized form instead of the
usual rich text editor.

Admin sections
The admin area may need to have new sections added by a plugin. In the Events
section, we described a logging plugin. A perfect complement to that is a graphing
log viewer, which would be shown as a completely new admin section and have its
own entry in the admin menu.

Page admin form additions
You may also want to add extra forms to all the Page forms in the admin, regardless
of what page type it is. For example, if you create a security plugin and want to
protect various pages depending on who is viewing it, you will need to be able to
choose which users or groups have access and what to display if the current user
does not have full access. This requires an additional form in the Page admin.

www.eBookTM.Com

Plugins

[156]

It is very dificult to describe all the possible plugin uses, and the number of triggers
that may be required.

The easiest way to proceed is to just adjust the engine as required. If it turns out you
forgot to add an event trigger at some point, it should be a small matter to just add it
in at that point without affecting the core code beyond that addition.

Example plugin coniguration
Create a directory called /ww.plugins.

Each plugin you create will be placed in a directory—one directory per plugin.

For our irst example, we're going to build a Page Comments plugin, which will
allow visitors to your site to leave comments on your pages.

On the admin side, we will need to provide methods to maintain the submitted
comments per page and for the whole site.

Anyway, create a directory to hold the plugin called /ww.plugins/page-comments.

The CMS will expect the plugin coniguration for each plugin to be in a ile named
plugin.php. So the coniguration for the Page Comments plugin /ww.plugins/
page-comments/plugin.php is as follows:

<?php

$plugin=array(

 'name' => 'Page Comments',

 'description' => 'Allow your visitors to comment on pages.',

 'version' => '0',

 'admin' => array(

 'menu' => array(

 'Communication>Page Comments' => 'comments'

) ,

 'page_tab' => array(

 'name' => 'Comments',

 'function' => 'page_comments_admin_page_tab'

)

),

 'triggers' => array(

 'page-content-created' => 'page_comments_show'

)

);

The plugin.php iles at least contain an array named $plugin, which describes the
plugin.

www.eBookTM.Com

Chapter 7

[157]

We will expand on the possible conigurations of this array throughout the book. For
now, let's look at what the current example says. All of these options, except the irst
two, are optional.

First, we deine a name, "Page Comments". This is only ever used in the admin area,
when you are choosing your plugins. The same is true of the description ield.

The version ield is used by the CMS to tell whether a plugin is up-to-date or if some
automatic maintenance is needed. This will be explained in more detail later in this
chapter.

Next, we have the admin array, which holds details of the admin-only functions.

The menu array is used to edit the admin menu, in case you need to add an admin
section for the plugin. In this case, we will add an admin section for Page Comments,
which will let you set site-wide settings and view comments site-wide.

If a new tab is to be added to the page admin section, this tab is described in the
page_tab array. name is what appears in the tab header, and function is the name of
a PHP function that will be called to generate the tab content.

Finally, the triggers array holds details of the various triggers that the plugin should
react to. Each trigger calls a function.

Obviously, this is not a complete list, and it is not possible to ever have a complete
list, as each new circumstance you are requested to write for may bring up a need for
a trigger or plugin conig setting that you had not thought of.

You will see as we go through the book that we add on new settings as we go.
However, you should also note that as we get closer to the end of the book, there are
less and less additions, as the plugin architecture becomes more complete.

From the plugin coniguration, you can see that there are some functions named,
which we have not deined.

You should deine those functions in the same ile:

function page_comments_admin_page_tab($PAGEDATA){

 require_once SCRIPTBASE.'ww.plugins/page-comments/'

 .'admin/page-tab.php';

 return $html;

}

function page_comments_show($PAGEDATA){

 if(isset($PARENTDATA->vars->comments_disabled) &&

 $PARENTDATA->vars->comments_disabled=='yes')

 return;

 require_once SCRIPTBASE.'ww.plugins/page-comments/'

 .'frontend/show.php';

}

www.eBookTM.Com

Plugins

[158]

The functions are preixed with an identiier to make sure that they don't clash with
the functions from other plugins. In this case, because the plugin is named Page
Comments, the preix is page_comments_.

The functions here are essentially stubs. Plugins will be loaded every time any
request is made to the server. Because of this, and the obvious fact that not all the
functions would be needed in every request, it makes sense to keep as little code in it
as possible in the plugin.php iles.

In most cases, triggers will be called with just the $PAGEDATA object as a parameter.
Obviously, in cases in the admin area where you're not editing any particular page
this would not make sense, but for most plugins, to keep the function calls consistent,
the only parameter is $PAGEDATA.

Enabling plugins
We have deined a plugin. We could make it such that when you place a plugin in
the /ww.plugins directory, it is automatically enabled. However, if you are creating
a CMS that you intend to reuse for a lot of other clients, it is a lot easier to simply
copy the entire CMS source and reconigure, than to copy the CMS source and then
clear out the existing plugins and repopulate carefully with new ones that you would
download from a repository that you keep somewhere else.

So, what we do is we give the admin a maintenance page where they choose the
plugins they want to load. The CMS then only loads those and does not even look at
the other directories.

Edit the /ww.admin/header.php ile and add a new link (highlighted) to the plugin
admin section:

Themes

Plugins

<a href="/ww.incs/logout.php?redirect=/ww.admin/"

 >Log Out

We will be changing the admin menu later in this chapter to make it customizable
more easily, but for now, add in that link manually.

Now create the /ww.admin/plugins.php ile:

<?php

require 'header.php';

echo '<h1>Plugin Management</h1>';

echo '<div class="left-menu">';

echo 'Users';

www.eBookTM.Com

Chapter 7

[159]

echo 'Themes';

echo 'Plugins';

echo '</div>';

echo '<div class="has-left-menu">';

echo '<h2>Plugin Management</h2>';

require 'plugins/list.php';

echo '</div>';

require 'footer.php';

You'll have noticed that this is similar to the /ww.admin/themes.php and /
ww.admin/users.php iles. They're all related to site-wide settings, so I've placed
links to them all in the left-menu. Edit those iles and add in the new Plugins link to
their menus.

Before we create the page for listing the enabled plugins, we must irst set up the array
of enabled plugins in /ww.incs/basics.php, by adding this to the end of the ile:

// { plugins

$PLUGINS=array();

if (isset($DBVARS['plugins'])&&$DBVARS['plugins']) {

 $DBVARS['plugins']=explode(',',$DBVARS['plugins']);

 foreach($DBVARS['plugins'] as $pname){

 if (strpos('/',$pname)!==false) continue;

 require SCRIPTBASE . 'ww.plugins/'.$pname.'/plugin.php';

 $PLUGINS[$pname]=$plugin;

 }

}

else $DBVARS['plugins']=array();

// }

As you can see, we are again referencing the $DBVARS array in the /.private/
config.php.

Because we already have a function for editing that (config_rewrite(), created
in the previous chapter), all we need to do to change the list of enabled or disabled
plugins, and create and maintain the $DBVARS['plugins'] array, making sure to
resave the conig ile after each change.

What the code block does is that it reads in the plugin.php ile for each enabled
plugin, and saves the $plugin array from each ile into a global $PLUGINS array.

www.eBookTM.Com

Plugins

[160]

The $DBVARS['plugins'] variable is an array, but we'll store it as a comma-delimited
string in the conig ile. Edit config_rewrite() in the same ile and add this
highlighted line:

 $tmparr=$DBVARS;

 $tmparr['plugins']=join(',',$DBVARS['plugins']);

 $tmparr2=array();

We'll enhance the plugin loader in a short while. In the meantime, let's inish the
admin plugin maintenance page.

Create the directory /ww.admin/plugins, and in it, add /ww.admin/plugins/list.
php:

<?php

echo '<table id="plugins-table">';

echo '<thead><tr><th>Plugin Name</th><th>Description</th>

 <th> </th></tr></thead><tbody>';

// { list enabled plugins first

foreach($PLUGINS as $name=>$plugin){

 echo '<tr><th>',htmlspecialchars(@$plugin['name']),'</th>',

 '<td>',htmlspecialchars(@$plugin['description']),'</td>',

 '<td><a href="/ww.admin/plugins/disable.php?n=',

 htmlspecialchars($name),'">disable</td>',

 '</tr>';

}

// }

// { then list disabled plugins

$dir=new DirectoryIterator(SCRIPTBASE . 'ww.plugins');

foreach($dir as $plugin){

 if($plugin->isDot())continue;

 $name=$plugin->getFilename();

 if(isset($PLUGINS[$name]))continue;

 require_once(SCRIPTBASE.'ww.plugins/'.$name.'/plugin.php');

 echo '<tr id="ww-plugin-',htmlspecialchars($name),

 '" class="disabled">',

 '<th>',htmlspecialchars($plugin['name']),'</th>',

 '<td>',htmlspecialchars($plugin['description']),'</td>',

 '<td><a href="/ww.admin/plugins/enable.php?n=',

 htmlspecialchars($name),'">enable</td>',

 '</tr>';

}

// }

echo '</tbody></table>';

www.eBookTM.Com

Chapter 7

[161]

When viewed in a browser, it displays like this:

The script displays a list of already-enabled plugins (we have none so far), and then
reads the /ww.plugins directory for any other plugins and adds them along with an
"enable" link.

Now we need to write some code to do the actual selection/enabling of the plugins.

While it would be great to write some jQuery to do it in an Ajaxy way (so you click
on the enable link and the plugin is enabled in the background, without reloading
the page), there are too many things that might cause problems. For instance, if the
plugin caused new items to appear in the menu, we'd have to handle that. If the
plugin changed the theme, or did anything else that caused a layout change, we'd
have to handle that as well.

So instead, we'll do it the old-fashioned PHP way—you click on enable or disable,
which does the job on the server, and then reloads the plugin page so you can see
the change.

Create the /ww.admin/plugins/enable.php ile:

<?php

require '../admin_libs.php';

if(!in_array($_REQUEST['n'],$DBVARS['plugins'])){

 $DBVARS['plugins'][]=$_REQUEST['n'];

 config_rewrite();

}

header('Location: /ww.admin/plugins.php');

www.eBookTM.Com

Plugins

[162]

It simply adds the requested plugin to the $DBVARS['plugins'] array, then rewrites
the conig and redirects the browser back to the plugins page.

When clicked, the page apparently just reloads, and the plugin's link changes to
disable.

The opposite script is just as simple. Write this code block in the ile /ww.admin/
plugins/disable.php:

<?php

require '../admin_libs.php';

if(in_array($_REQUEST['n'],$DBVARS['plugins'])){

 unset($DBVARS['plugins'][

 array_search($_REQUEST['n'],$DBVARS['plugins'])

]);

 config_rewrite();

}

header('Location: /ww.admin/plugins.php');

In this case, all we needed to do was to remove the plugin name from
$DBVARS['plugins'] by unsetting its position in the array.

Plugins are now very simply set up. Here's a screenshot of that page with a number
of plugins enabled and disabled. I copied some plugins from a more mature copy of
the CMS that I have. We won't cover all of them in this book, but will be looking at a
few of them, and building one or two others:

www.eBookTM.Com

Chapter 7

[163]

The enabled plugins are moved to the top of the list to make them more visible and
the rest are shown below them.

Handling upgrades and database tables
Plugins frequently require database tables to be created or amended.

Because we are not doing a traditional installation when we install a plugin and
simply clicking on enable, the CMS needs to know if anything needs to be done to
the database (or other things, as we'll see).

For this, the CMS needs to keep a record of what version of the plugin is installed.

The way I handle upgrades in the CMS is that there are two copies of the plugin
version numbers. One is kept in the $DBVARS array and another is kept hardcoded in
the plugin's $plugin array.

If there is a discrepancy between the two, for example, if you've simply never used
the plugin before or if you downloaded a later version of the plugin that has a
different version number, you know an upgrade needs to be done.

I'll explain as we create the upgrade architecture. First, edit /ww.incs/basics.php
and add the following highlighted lines to the plugins section:

 require SCRIPTBASE . 'ww.plugins/'.$pname.'/plugin.php';

 if(isset($plugin['version']) && $plugin['version'] && (

 !isset($DBVARS[$pname.'|version'])

 || $DBVARS[$pname.'|version']!=$plugin['version']

)){

 $version=isset($DBVARS[$pname.'|version'])

 ?(int)$DBVARS[$pname.'|version']

 :0;

 require SCRIPTBASE.'ww.plugins/'.$pname.'/upgrade.php';

 $DBVARS[$pname.'|version']=$version;

 config_rewrite();

 header('Location: '.$_SERVER['REQUEST_URI']);

 exit;

 }

 $PLUGINS[$pname]=$plugin;

How it works is that if the $plugin version is greater than 0 and either the $DBVARS-
recorded version doesn't exist or is not equal to the $plugin version, we run an
upgrade.php script in the plugin's directory and then reload the page.

www.eBookTM.Com

Plugins

[164]

Note the $DBVARS[$pname.'|version'] variable name. In the Page Content
plugin's case, that will be $DBVARS['page-content|version'].

Even if a plugin is eventually disabled, we don't clear that value. Because the
upgrade may have made database changes, there's no point removing the value and
potentially ruining the database, if you eventually re-enable the plugin.

Let's create the Page Comments upgrade.php, /ww.plugins/page-comments/
upgrade.php:

<?php

if($version==0){ // create tables

 dbQuery('create table `page_comments_comment` (

 `id` int(11) NOT NULL auto_increment,

 `comment` text,

 `author_name` text,

 `author_email` text,

 `author_website` text,

 `page_id` int,

 `status` int,

 `cdate` datetime,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8');

 $version++;

}

And add a version number to the end of the array in /ww.incs/page-comments/
plugin.php:

) ,

 'version' => 1

);

Now, let's say you've just enabled the Page Comments plugin. What will happen is:

•	 'page-comments' is added to $DBVARS and the plugins admin page is
reloaded.

•	 As part of the reload, the /ww.incs/basics.php plugins section
notices that the plugin has a version number, but the $DBVARS['page-
content|version'] value does not exist. $version is set to 0, and the
plugin's upgrade.php script is run.

•	 The upgrade script creates the page_comments_comment table and
increments $version to 1.

•	 The new $version is then recorded in $DBVARS['page-content|version']
and the page is reloaded (again).

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 7

[165]

So in this case, clicking on enable triggered two reloads, one of which also ran an
upgrade script.

Now, let's say that you later decided that you needed to also record a moderation
e-mail address and whether or not moderation was turned on.

It doesn't make sense to create a whole new database table just to record single values.

Luckily, we already have some code in place that can record single values eficiently.
Edit the upgrade.php script again and add the following code at the end:

if($version==1){ // add moderation details

 $DBVARS[$pname.'|moderation_email']='';

 $DBVARS[$pname.'|moderation_enabled']='no';

 $version++;

}

Change the version number in the plugin.php ile to 2.

Remember that the irst run of the script set $DBVARS['page-content|version']
equal to 1. In this case, when a page is loaded, the upgrade script will skip the irst if
statement and will run the second.

If the plugin was being enabled for the irst time, both if statements would be run.

The script we just wrote adds the moderation values directly to the /.private/
config.php ile. Notice that we preixed the values with page-comments| so that
they would not clash with other plugins.

In my case, that means /.private/config.php now looks like this:

<?php

$DBVARS=array(

 'username'=>'cmsuser',

 'password'=>'cmspass',

 'hostname'=>'localhost',

 'db_name'=>'cmsdb',

 'theme'=>'basic',

 'plugins'=>'page-comments',

 'page-comments|moderation_email'=>'',

 'page-comments|moderation_enabled'=>'no',

 'page-comments|version'=>'2'

);

Also, notice that the second change was not a database one. You can do ile updates,
send a notiication ping to a remote server, send an e-mail, or anything else you
want, in those updates.

www.eBookTM.Com

Plugins

[166]

Custom admin area menu
If you remember, we had the following code lines in plugin.php:

 'menu' => array(

 'Communication>Page Comments' => 'comments'

),

Those indicate that we want to add a Page Comments link under a Communication
top-level menu. When clicked, it should load up an admin maintenance script kept in
/ww.plugins/page-comments/admin/comments.php.

To make this work, we will need to rewrite the admin menu.

Luckily, we've already installed the Filament Group menu, so we can use that. All
we need to do is build a customized menu in the admin header instead of the
hardcoded one we already have.

In /ww.admin/header.php, remove the entire #menu-top element and its contents.
We will replace that code with the custom form. Here is the start of it:

<?php

 $menus=array(

 'Pages'=>array(

 '_link'=>'/ww.admin/pages.php'

),

 'Site Options'=>array(

 'Users' => array('_link'=>'/ww.admin/users.php'),

 'Themes' => array('_link'=>'/ww.admin/themes.php'),

 'Plugins'=> array('_link'=>'/ww.admin/plugins.php')

)

);

 // }

First, we create the basic menu array. Any of the plugins that have menu items will
add theirs to this.

 // { add custom items (from plugins)

 foreach($PLUGINS as $pname=>$p){

 if(!isset($p['admin'])

 || !isset($p['admin']['menu']))continue;

 foreach($p['admin']['menu'] as $name=>$page){

 if(preg_match('/[^a-zA-Z0-9 >]/',$name))continue;

 $json='{"'.str_replace('>','":{"',$name)

 .'":{"_link":"plugin.php?_plugin='

 .$pname.'&_page='.$page.'"}}'

www.eBookTM.Com

Chapter 7

[167]

 .str_repeat('}',substr_count($name,'>'));

 $menus=array_merge_recursive($menus,

 json_decode($json,true));

 }

 }

 // }

Our Page Comments plugin has a menu address Communication > Page
Comments. This code block takes that string and creates a recursive JSON object
from it (Page Comments contained in Communication), which it then converts to a
PHP array, and merges it with $menus.

I know it looks dificult to understand—it was a pain to write it as well! I couldn't
think of a simpler way to do it which was as concise. If you do, please e-mail me. I
prefer my code to be readable by other people.

 $menus['Log Out']=array('_link'=>

 '/ww.incs/logout.php?redirect=/ww.admin/');

Finally, we add the Log Out button at the end of the $menus array.

And now, let's output the data in a nested list.

 // { display menu as UL list

 function admin_menu_show($items,$name=false,

 $prefix,$depth=0){

 if(isset($items['_link']))

 echo ''.$name.'';

 else if($name!='top')

 echo ''.$name.'';

 if(count($items)==1 && isset($items['_link']))return;

 if($depth<2)echo '<div id="'.$prefix.'-'.$name.'">';

 echo '';

 foreach($items as $iname=>$subitems){

 if($iname=='_link')continue;

 echo '';

 admin_menu_show($subitems,$iname,

 $prefix.'-'.$name,$depth+1);

 echo '';

 }

 echo '';

 if($depth<2)echo '</div>';

 }

 admin_menu_show($menus,'top','menu');

 // }

?>

www.eBookTM.Com

Plugins

[168]

If an item does not explicitly have a _link associated with it, the name is shown and
it is not clickable (or at least doesn't do anything when clicked).

With that in place, we have the following menu:

The sub-menus do not yet appear because we haven't enabled the fg-menu.

Edit /ww.admin/j/admin.js and add the following highlighted lines to the inal
section:

 $('input.date-human').each(convert_date_to_human_readable);

 $('#menu-top>ul>li>a').each(function(){

 if(!(/#/.test(this.href.toString())))return;

 $(this).menu({

 content: $(this).next().html(),

 flyOut:true,

 showSpeed: 400,

 callerOnState: '',

 loadingState: '',

 linkHover: '',

 linkHoverSecondary: '',

 flyOutOnState: ''

 });

 });

});

That piece of code runs fg-menu on all the items in the menu that do not link to #.

www.eBookTM.Com

Chapter 7

[169]

After this, we can see that the Site Options menu now makes sense:

And we have our Page Comments menu item:

Notice the URL in the status bar.

http://cms/ww.admin/plugin.php

 ?_plugin=page-comments&_page=comments

All the menu items created from plugins are directed to /ww.admin/plugin.php
(not /ww.admin/plugins.php; that has a different purpose), telling the script what
plugin is being used (page-comments) and what admin form (comments) should be
used from the plugin's /admin directory.

www.eBookTM.Com

Plugins

[170]

Create the ile /ww.admin/plugin.php:

<?php

require 'header.php';

$pname=$_REQUEST['_plugin'];

$pagename=$_REQUEST['_page'];

if(preg_match('/[^\-a-zA-Z0-9]/',$pagename) || $pagename=='')

 die('illegal character in page name');

if(!isset($PLUGINS[$pname]))die('no plugin of that name ('

 .htmlspecialchars($pname).') exists');

$plugin=$PLUGINS[$pname];

$_url='/ww.admin/plugin.php?_plugin='.urlencode($pname)

 .'&_page='.$pagename;

echo '<h1>'.htmlspecialchars($pname).'</h1>';

if(!file_exists(SCRIPTBASE.'/ww.plugins/'.$pname.'/admin/'

 .$pagename.'.php')){

 echo 'The '.htmlspecialchars($pname).'

 plugin does not have an admin page named '

 .$pagename.'.';

}

else{

 if(file_exists(SCRIPTBASE.'/ww.plugins/'.$pname

 .'/admin/menu.php')){

 include SCRIPTBASE.'/ww.plugins/'

 .$pname.'/admin/menu.php';

 echo '<div class="has-left-menu">';

 include SCRIPTBASE.'/ww.plugins/'.$pname.'/admin/'

 .$pagename.'.php';

 echo '</div>';

 }

 else include SCRIPTBASE.'/ww.plugins/'.$pname.'/admin/'

 .$pagename.'.php';

}

require 'footer.php';

When called, this displays the standard admin area header, including the menu, and
then checks the requested plugin data.

If the plugin doesn't exist, the requested page doesn't exist in the plugin's /admin
directory, or if the other tests fail, an explanation is shown to the admin and the
script is exited.

If all is well, we display the plugin's admin page.

www.eBookTM.Com

Chapter 7

[171]

If a menu.php ile exists in the plugin's /admin directory, the menu is shown in a
column on the left-hand side and the rest of the page is on the right-hand side.

Otherwise, the page takes over the entire space available.

We haven't created the admin page for comments yet, so here's what the error
message looks like:

Ideally, the admin should never see that page at all, but if they go playing around
with the contents of the URL bar, we need to take care of any eventualities.

Now, we'll write a simple script for that. Create the /ww.plugins/page-comments/
admin/ directory, and create a ile in it called comments.php, with the following code:

<?php

$htmlurl=htmlspecialchars('/ww.admin/plugin.php?_plugin='

 .'page-comments&_page=comments');

// { moderation settings

echo '<form action="',$htmlurl,'" method="post">'

 ,'<h2>Moderation</h2><table><tr><th>Enabled</th>'

 ,'<th>Moderator\'s email</th></tr>';

// { moderation enabled

echo '<tr><td><select name="moderation_enabled">'

 ,'<option value="no">No</option><option value="yes"';

if($DBVARS['page-comments|moderation_enabled']=='yes')

 echo ' selected="selected"';

echo '>yes</option></select></td>';

// }

// { moderation email

echo '<td><input name="moderation_email" value="'

www.eBookTM.Com

Plugins

[172]

 ,htmlspecialchars(

 $DBVARS['page-comments|moderation_email'])

 ,'" /></td>';

// }

echo '<td><input type="submit" name="action" value="save" '

 ,'/></td></tr></table></form>';

This code, when viewed in the browser, shows the following:

The irst thing we do is to set $htmlurl. This is the HTML-encoded URL of the
current plugin admin page. You will need to use this in all the actions so that the
CMS knows what plugin you're working with.

We use it, for example, in the <form> that we set to use the POST method (otherwise,
when the form is submitted, it may override the ?_plugin=page-comments&_
page=comments part of the URL).

Let's add the code for saving that now. Add it after the opening the <?php line in
the ile.

if(isset($_REQUEST['action']) && $_REQUEST['action']=='save'){

 $mod=($_REQUEST['moderation_enabled']=='yes')?'yes':'no';

 $email=$_REQUEST['moderation_email'];

 if(($mod=='yes' && $email=='') ||

 ($mod=='yes' && !

 filter_var($email,FILTER_VALIDATE_EMAIL))){

 echo 'error: email is not valid. please retry';

 }

 else{

 $DBVARS['page-comments|moderation_email']=$email;

www.eBookTM.Com

Chapter 7

[173]

 $DBVARS['page-comments|moderation_enabled']=$mod;

 config_rewrite();

 echo 'Moderation options saved';

 }

}

This just does a bit of validation on the submitted form, then saves it using the
config_rewrite() function to write it directly to the conig ile.

Okay, that's enough from the admin area for now. Let's work on the front-end.

Adding an event to the CMS
We want it so that after the content of a page is igured out, we can trigger a plugin
to run some code on it. The obvious place for this trigger to run is immediately at the
end of the "set up pagecontent" block in /ww.index.php (highlighted):

 // other cases will be handled here later

}

plugin_trigger('page-content-created',$PAGEDATA);

// }

// { set up metadata

We will create that function in /ww.incs/basics.php:

function plugin_trigger($trigger_name){

 global $PLUGIN_TRIGGERS,$PAGEDATA;

www.eBookTM.Com

Plugins

[174]

 if(!isset($PLUGIN_TRIGGERS[$trigger_name]))return;

 foreach($PLUGIN_TRIGGERS[$trigger_name] as $fn)

 $fn($PAGEDATA);

}

This checks to see if a plugin trigger of that name (page-content-created) exists
in the global $PLUGIN_TRIGGERS array, which we'll create in a moment, and if so, it
runs all functions associated with the name, sending $PAGEDATA as a parameter.

In the same ile as we are creating the $PLUGINS array, we should also be creating the
$PLUGINS_TRIGGERS array.

Change the start of the plugins block to this:

// { plugins

$PLUGINS=array();

$PLUGINS_TRIGGERS=array();

if(isset($DBVARS['plugins'])&&$DBVARS['plugins']){

And near the end of the block:

 $PLUGINS[$pname]=$plugin;

 if(isset($plugin['triggers'])){

 foreach($plugin['triggers'] as $name=>$fn){

 if(!isset($PLUGIN_TRIGGERS[$name]))

 $PLUGIN_TRIGGERS[$name]=array();

 $PLUGIN_TRIGGERS[$name][]=$fn;

 }

 }

 }

}

else $DBVARS['plugins']=array();

And it's as simple as that. We can now create triggers anywhere in the CMS core, and
they will execute any that are in the plugins.

If you remember, the Page Comments plugin triggers the function page_comments_
show() when page-content-created is triggered.

We've already written a stub function for this, which then loads up the ile /
ww.plugins/page-comments/frontend/show.php.

www.eBookTM.Com

Chapter 7

[175]

Create that ile now (create the directory ww.plugins/page-comments/frontend
irst):

<?php

global $pagecontent,$DBVARS;

$c='';

$message='';

// { add submitted comments to database

// }

// { show existing comments

// }

// { show comment entry form

$c.=''

 .'<h3>Add a comment</h3>';

if($message)$c.=$message;

$c.='<form action="'.$PAGEDATA->getRelativeURL()

 .'#page-comments-submit" method="post"><table>';

$c.='<tr><th>Name</th><td><input name="page-comments-name" />'

 .'</td></tr>';

$c.='<tr><th>Email</th><td><input type="email" '

 .'name="page-comments-email" /></td></tr>';

$c.='<tr><th>Website</th><td><input '

 .'name="page-comments-website" /></td></tr>';

$c.='<tr><th>Your Comment</th><td><textarea '

 .'name="page-comments-comment"></textarea></td></tr>';

$c.='<tr><th colspan="2"><input name="action" '

 .'value="Submit Comment" /></th></tr>';

$c.='</table></form>';

// }

$pagecontent.='<div id="page-comments-wrapper">'.$

 c.'</div>';

Simple enough; this adds a comment box onto the global $pagecontent variable.

Note that the #page-comments-submit anchor appended to the page URL. If
someone submits a comment, they will be brought back to the comment form.

I've adjusted the basic theme we've been using, to make it a little neater and added
some Lorem Ipsum text to the body of the home page, so we can see what it looks
like with some text in it.

www.eBookTM.Com

Plugins

[176]

Here's what the home page looks like with the Page Comments plugin enabled:

Now we need to take care of what happens when the comment is submitted.

Edit the /ww.plugins/page-comments/frontend/show.php ile, changing the "add
submitted comments to database" section to this:

// { add submitted comments to database

if(isset($_REQUEST['action']) &&

 $_REQUEST['action']=='Submit Comment'){

 if(!isset($_REQUEST['page-comments-name']) ||

 $_REQUEST['page-comments-name']=='')

 $message.='Please enter your name.';

 if(!isset($_REQUEST['page-comments-email']) ||

 !filter_var($_REQUEST['page-comments-email'],

 FILTER_VALIDATE_EMAIL))

 $message.='Please enter your email address.';

 if(!isset($_REQUEST['page-comments-comment']) ||

 !$_REQUEST['page-comments-comment'])

 $message.='Please enter a comment.';

 if($message)$message='<ul

 class="error page-comments-error">'.$message.'';

 else{

 $website=isset($_REQUEST['page-comments-website'])

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 7

[177]

 ?$_REQUEST['page-comments-website']:'';

 if($DBVARS['page-comments|moderation_enabled']=='yes'){

 $status=0;

 mail($DBVARS['page-comments|moderation_email'],

 '['.$_SERVER['HTTP_HOST'].'] comment submitted',

 'A new comment has been submitted to the page "'

 .$PAGEDATA->getRelativeUrl().'". Please log into '

 'the admin area of the site and moderate it using '

 'that page\'s admin.',

 'From: noreply@'.$_SERVER['HTTP_HOST']

 ."\nReply-to: noreply@".$_SERVER['HTTP_HOST']);

 $message='<p>Comments are moderated. It may be a '

 .'few minutes before your comment appears.</p>';

 }

 else $status=1;

 dbQuery('insert into page_comments_comment set comment="'

 .addslashes($_REQUEST['page-comments-comment'])

 .'",author_name="'

 .addslashes($_REQUEST['page-comments-name'])

 .'",author_email="'

 .$_REQUEST['page-comments-email']

 .'",author_website="'.addslashes($website)

 .'",cdate=now(),page_id='.$PAGEDATA->id.',status='

 .$status);

 }

}

// }

This will record the comment in the database. Notice the status ield. This says
whether a comment is visible or not.

This can be enhanced in many ways. You can change the e-mail that's sent to the
moderator to add links back to the right places, you can add an is_spam ield to the
database and check the comment using the Akisment service (http://akismet.
com/), or you can have client-side jQuery form validation.

I haven't added these, as I am currently simply explaining how plugins work.

Finally in this section, we need to display any comments that have been successfully
entered and moderated. To simulate this, I temporarily turned off moderation in my
own copy before doing the following (so comments go through with status set to 1).

www.eBookTM.Com

Plugins

[178]

Before we write the code for showing comments, we will add a new function to /
ww.incs/basics.php:

function date_m2h($d, $type = 'date') {

 $date = preg_replace('/[- :]/', ' ', $d);

 $date = explode(' ', $date);

 if ($type == 'date') {

 return date('l jS F, Y', mktime(0, 0, 0,

 $date[1], $date[2], $date[0]));

 }

 return date(DATE_RFC822, mktime($date[5],

 $date[4], $date[3], $date[1], $date[2], $date[0]));

}

This function m2h (stands for "mysql to human") takes a MySQL date and converts it
to a format that can be read by humans.

It's easy to write two or three lines and get the same result (or one complex line), but
why bother, when it just takes a single function call?

Now, edit /ww.plugins/page-comments/frontend/show.php again and this time
change the "show existing comments" section to this:

// { show existing comments

$c.='<h3>Comments</h3>';

$comments=dbAll('select * from page_comments_comment where

 status=1 and page_id='.$PAGEDATA->id.' order by cdate');

if(!count($comments)){

 $c.='<p>No comments yet.</p>';

}

else foreach($comments as $comment){

 $c.=htmlspecialchars($comment['author_name']);

 if($comment['author_website'])$c.=' (<a href="'

 .htmlspecialchars($comment['author_website']).'">'

 .htmlspecialchars($comment['author_website']).')';

 $c.=' said, at '.date_m2h($comment['cdate'])

 .':
<blockquote>'

 .nl2br(htmlspecialchars($comment['comment']))

 .'</blockquote>';

}

// }

This code takes comments from the page_comments_comment table and shows them
in the page, as long as they have already been accepted/moderated (their status is 1),
and they belong to that page.

www.eBookTM.Com

Chapter 7

[179]

Here's a screenshot of our home page now, with a submitted comment:

And now we get to the inal major plugin method for the CMS in this chapter (there
is still more to come): adding a tab to the page admin.

Adding tabs to the page admin
When a comment is submitted (by the way, turn moderation back on), an e-mail is
sent to the moderator, who is asked to log into the admin area to check messages that
may have been sent.

We had this in the plugin.php ile:

 'page_tab' => array(

 'name' => 'Comments',

 'function' => 'page_comments_admin_page_tab'

)

We will use this information to add a new tab to the page admin named Comments,
which will be populated by calling a function page_comments_admin_page_tab(),
which we've already built as a stub. It loads and runs the ile /ww.plugins/page-
comments/admin/page-tab.php, which generates a string named $html (it contains
HTML) and returns that to the page admin to be displayed.

www.eBookTM.Com

Plugins

[180]

Note that it is also very useful to have a central area where comments
from all pages can be moderated. This chapter does not discuss that,
but if you wish to see how that would be implemented, please see the
comments plugin here: http://code.google.com/p/webworks-
webme/source/browse/#svn/ww.plugins/comments.

So irst, let's adapt the page admin so it will run the plugin's function. Edit /
ww.admin/pages/forms.php and before the line which opens the <form>, add the
highlighted code given as follows:

// }

// { generate list of custom tabs

$custom_tabs=array();

foreach($PLUGINS as $n=>$p){

 if(isset($p['admin']['page_panel'])){

 $custom_tabs[$p['admin']['page_panel']['name']]

 =$p['admin']['page_panel']['function'];

 }

}

// }

echo '<form id="pages_form" method="post">';

This code builds up a $custom_tabs array from the global $PLUGINS array.

Next, we display the tab names . Replace the "// add plugin tabs here" line with this
highlighted line:

 ,'Advanced

 Options';

foreach($custom_tabs as $name=>$function)echo '<a

 href="#tabs-custom-'

 ,preg_replace('/[^a-z0-9A-Z]/','',$name)

 ,'">',htmlspecialchars($name),'';

echo '';

Finally, we add in the actual tab content (highlighted code) after the "Advanced
Options" section:

// }

// { tabs added by plugins

foreach($custom_tabs as $n=>$p){

 echo '<div id="tabs-custom-'

 ,preg_replace('/[^a-z0-9A-Z]/','',$n),'">'

 ,$p($page,$page_vars),'</div>';

}

www.eBookTM.Com

Chapter 7

[181]

// }

echo '</div><input type="submit" name="action" value="',

 ($edit?'Update Page Details':'Insert Page Details')

 ,'" /></form>';

This creates the tab bodies by calling the plugin functions with two parameters; the
main $page table data, and the custom variables of the page, $page_vars.

The result is then echoed to the screen.

So, let's create the /ww.plugins/page-comments/admin/page-tab.php ile:

<?php

$html='';

$comments=dbAll('select * from page_comments_comment where

 page_id='.$PAGEDATA['id'].' order by cdate desc');

if(!count($comments)){

 $html='No comments yet.';

 return;

}

$html.='<table id="page-comments-table"><tr><th>Name</th>'

 ,'<th>Date</th><th>Contact</th>'

 ,'<th>Comment</th><th> </th></tr>';

foreach($comments as $comment){

 $html.='<tr class="';

 if($comment['status'])$html.='active';

 else $html.='inactive';

 $html.='" id="page-comments-tr-'.$comment['id'].'">';

 $html.='<th>'.htmlspecialchars($comment['author_name'])

 .'</th>';

 $html.='<td>'.date_m2h($comment['cdate'],'datetime')

 .'</td>';

 $html.='<td>';

 $html.='<a href="mailto:'

 .htmlspecialchars($comment['author_email']).'">'

 .htmlspecialchars($comment['author_email']).'
';

 if($comment['author_website'])$html.='<a href="'

 .htmlspecialchars($comment['author_website']).'">'

 .htmlspecialchars($comment['author_website']).'';

 $html.='</td>';

 $html.='<td>'.htmlspecialchars($comment['comment']).'</td>';

 $html.='<td></td></tr>';

}

$html.='</table><script src="/ww.plugins/page-comments'

 .'/admin/page-tab.js"></script>';

www.eBookTM.Com

Plugins

[182]

In this code block, we build up a string variable named $html that holds details on
all the comments for a speciied page.

We've left a blank <td> at the end of each row, which will be illed by jQuery with
some actionable links.

Enhancements that you could build in here might be to limit the number of
characters available in each table cell or also to add pagination for pages with vast
numbers of comments.

We can already see that the tab is working:

Now we need to add in the actions.

Create the ile /ww.plugins/page-comments/admin/page-tab.js:

function page_comments_build_links(){

 var stat=this.className;

 if(!stat)return;

 var id=this.id.replace('page-comments-tr-','');

 var html='<a href="javascript:page_comments_'+(

 (stat=='active')

 ?'deactivate('+id+');">deactivate'

 :'activate('+id+');">activate'

)+' | <a href="javascript:'

www.eBookTM.Com

Chapter 7

[183]

 +'page_comments_delete('+id+');">delete';

 $(this).find('td:last-child').html(html);

}

$(function(){

 $('#page-comments-table tr')

 .each(page_comments_build_links);

});

This script takes all the <tr> rows in the table, checks their classes, and builds up
links based on whether the link is currently active or inactive.

The reason we do this through JavaScript and not straight in the PHP is that we're
going to moderate the links through AJAX, so it would be a waste of resources to do
it in both PHP and jQuery.

The page now looks like this:

Okay, now we just need to make those links work. Add these functions to the
same ile:

function page_comments_activate(id){

 $.get('/ww.plugins/page-comments/admin/activate.php'

 +'?id='+id,function(){

 var el=document.getElementById('page-comments-tr-'+id);

 el.className='active';

www.eBookTM.Com

Plugins

[184]

 $(el).each(page_comments_build_links);

 });

}

function page_comments_deactivate(id){

 $.get('/ww.plugins/page-comments/admin/deactivate.php'

 +'?id='+id,function(){

 var el=document.getElementById('page-comments-tr-'+id);

 el.className='inactive';

 $(el).each(page_comments_build_links);

 });

}

function page_comments_delete(id){

 $.get('/ww.plugins/page-comments/admin/delete.php'

 +'?id='+id,function(){

 $('#page-comments-tr-'+id).fadeOut(500,function(){

 $(this).remove();

 });

 });

}

These handle the deletion, activation, and deactivation of comments from the client-
side. I haven't included tests to see if they were successful (this is a demo).

The deletion event is handled by fading out the table row and then removing it. The
others simply change classes on the row and links in the right cell.

First, let's build the activation PHP script /ww.plugins/page-comments/admin/
activate.php:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

$id=(int)$_REQUEST['id'];

dbQuery('update page_comments_comment set status=1

 where id='.$id);

echo '1';

The next one is to deactivate the comment, /ww.plugins/page-comments/admin/
deactivate.php:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

$id=(int)$_REQUEST['id'];

dbQuery('update page_comments_comment set status=0

 where id='.$id);

echo '0';

www.eBookTM.Com

Chapter 7

[185]

Yes, they're the same except for two numbers. I have them as two iles because it
might be interesting in the future to add in separate actions that happen after one
or the other, such as sending an e-mail when a comment is activated and other such
actions.

The inal script is the deletion one, /ww.plugins/page-comments/admin/delete.
php:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

$id=(int)$_REQUEST['id'];

dbQuery('delete from page_comments_comment where id='.$id);

echo '1';

Very simple and it completes our Page Comments example!

As pointed out, there are a load of ways in which this could be improved. For
example, we didn't take into account people that are already logged in (they
shouldn't have to ill in their details and should be recorded in the database), there
is no spam control, we did not use client-side validation, you could add "gravatar"
images for submitters, and so on.

All of these things can be added on at any point. We're onto the next plugin now!

Summary
In this chapter, we built the framework for enabling plugins and looked at a number
of ways that the plugin can integrate with the CMS.

We also changed the admin menu so it could incorporate custom items from the
plugins.

We built an example plugin, Page Comments, which used a few different plugin
hook types, page admin tabs, a standalone admin page, and a page-content-
created trigger.

In the next chapter, we will create a plugin that allows the admin to create a form
page for submission as an e-mail or for saving in the database.

www.eBookTM.Com

